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Second-harmonic generation spectra for a wide range of carbon nanotubes are computed within a nonor-
thogonal tight-binding approach. It is demonstrated that a broken �−�� symmetry is a prerequisite for a
nonvanishing nonlinear response. We study the diameter and chirality dependences of the response and find
that optimal values exist for both parameters. Hence, for semiconducting nanotubes the largest response is
obtained for diameters around 15 Å. For metallic structures, second-harmonic generation is weak in general.
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I. INTRODUCTION

Efficient optical harmonic generation in carbon nanotubes
�CNs� has been predicted theoretically for the cases of
second-harmonic generation �SHG�,1,2 third-harmonic
generation,3–5 as well as high-harmonic generation.6,7 Sev-
eral of these theoretical results have been verified
experimentally.4,8–10 In particular, Su et al.10 reported spec-
troscopic SHG measurements for 4 Å CNs. A pronounced
resonance attributed to �4,2� CNs was found to dominate the
response in agreement with the pioneering calculations of
Guo et al.1 Hence, there are strong indications that efficient
resonant harmonic generation opens a window to different
applications as well as fundamental studies of CNs.

The linear optical properties of CNs have been the subject
of countless theoretical and experimental investigations. The
influence of CN geometry on the free-carrier �independent
particle� optical response is rather well understood11 and
complete tables of structure-assigned optical resonances
exist.12 Moreover, excitonic effects have been studied theo-
retically at both k� · p� �Ref. 13� and effective-mass14 and
Bethe-Salpeter equation-based15–17 levels of sophistication.
In comparison, however, the nonlinear optical response is
understood only at a rudimentary level. In particular, many
questions remain unanswered for even-order effects such as
SHG. To obtain a large dipole-allowed response, these ef-
fects require broken inversion symmetry, i.e., noncentrosym-
metry. This must be considered both for the individual CNs,
which must therefore be chiral,1 but also for collections of
CNs since normal samples contain a racemic mixture of left-
and right-handed tubes. In this connection, the surprisingly
large response of racemic mixtures of chiral CNs reported in
Ref. 10 requires an explanation. In analogy with the linear
optical response, excitons are expected to modify the nonlin-
ear response significantly. At present, virtually nothing is
known about the effect of excitons on location or magnitude
of the nonlinear optical resonances. Moreover, nonlinear ex-
citations in CNs are complicated by the possibility of creat-
ing biexciton complexes that are expected to be stable even
at room temperature.18 Finally, although a large SHG re-
sponse has been predicted for small-diameter CNs, it is clear
that this cannot hold true for arbitrarily large nanotubes. The
reason is that the properties of such large tubes approach
those of graphene, which is a centrosymmetric material with
vanishing dipole response. Hence, an optimum CN diameter
for the SHG response is expected.

Previously, the SHG response has been calculated only for
a few small-diameter chiral1 and deformed achiral2 CNs us-
ing density-functional theory �DFT�. For the �4,2� CN, Ref. 1
predicted a resonance around 2 eV, in agreement with
experiments,10 as well as a pronounced shoulder on the low-
energy side, which was not observed experimentally. In Ref.
2, only the imaginary part of the nonlinear response is re-
ported but apparently a similar shoulder is predicted. This
discrepancy may be an indication that substantial excitonic
effects modify the response. Before addressing such issues
theoretically, however, a detailed understanding of single-
particle effects in the nonlinear response is required. Hence,
in the present work, we consider a wide range of diameters
and chiralities in order to provide a systematic study of the
geometry dependence of SHG in the single-particle approxi-
mation. By working within a �nonorthogonal� tight-binding
model, we are able to treat very large structures with ex-
tremely high numerical accuracy. Specifically, we consider
CNs up to the �34,17� structure with as many as 476 atoms in
the unit cell. Also, high numerical accuracy is obtained by
sampling 500 k points in the Brillouin zone combined with
an accurate treatment of singular spectral functions. Our cal-
culations allow us to provide a detailed picture of the �1�
diameter dependence and �2� chirality dependence of the
nonlinear response. In particular, the limiting behavior as the
CN diameter increases and the structure approaches planar
graphene is studied. We find that the nonlinear response
peaks around a CN diameter of 15 Å. Also, general trends in
the nonlinear response are identified and spectral features are
interpreted in terms of the band structure. In particular, we
demonstrate that �−�� asymmetry is essential for a nonva-
nishing response even in chiral CNs. The present calcula-
tions can be regarded as benchmark tight-binding spectra. As
such, they provide an excellent reference for studies of exci-
tons in the SHG response. This will be the subject of future
work.

II. THEORY AND METHODS

We begin by outlining the approach used to compute the
nonlinear optical response. In accordance with Refs. 1 and 2,
we focus on the dominating interband response and work
within the independent-particle approximation. Also, it is
convenient computationally to start from the imaginary part
of the response in the limit of vanishing broadening. Subse-
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quently, we then add broadening via a convolution with a
Gaussian line-shape function and apply the Kramers-Kronig
transformation to compute the real part of the response.
Therefore, the appropriate second-order response function at
pump frequency � is19

Im �xyz
�2� ��� =

e3

2�2�3m3A
� �

i�v,j�c,l
� Pijl

1
2� ji − �li

��2� − � ji�

+ � Pilj

� ji + � jl
+

Pjli

� ji + �li
���� − � ji��dk . �1�

Here, � ji=� j −�i is the transition frequency between states i
and j and Pijl	 Im
pij

x �pjl
y pli

z + pjl
z pli

y� /2� with pij
� as the mo-

mentum matrix element along the � direction. We choose the
z axis to coincide with the CN long axis. The expression
above is identical to the one used in Refs. 1 and 2. However,
when written in the present form, the contributions from 2�
resonances �2��� ji� and � resonances ���� ji� are clearly
brought out. The indices in the summation are taken to mean
that i and j run over occupied and empty states, respectively,
whereas no restrictions are placed on l other than l� i , j.
Finally, we follow Refs. 1 and 2 and choose to normalize
with an area A=�
�D /2+d /2�2− �D /2−d /2�2�=�Dd, where
D and d=3.35 Å are the CN diameter and wall thickness,
respectively. Such normalization corresponds to omitting the
hollow core of the CN from the volume used to obtain the
macroscopic response of a dense CN sample. We note that all
other nonvanishing tensor elements of the nonlinear response
are related to the xyz element above via �xyz

�2� =�xzy
�2� =−�yxz

�2� =
−�yzx

�2� .
A nearest-neighbor tight-binding description of �-electron

states with a hopping integral of t=−2.89 eV �Ref. 20� is
applied for the computation of eigenstates. Based on these,
momentum matrix elements are obtained in the usual
manner.21,22 As we will demonstrate below, the inclusion of
nearest-neighbor wave-function overlap is essential for a cor-
rect description of the nonlinear response. Hence, the gener-
alized eigenvalue problem reads as

�2pci + �
j

tcj = E�ci + �
j

scj� , �2�

where s�0.1 is the overlap between neighbor �-electron
states and �2p�−5 eV is their on-site energy.23,24 The sum-
mations over j include nearest neighbors to the ith site only.
In the absence of overlap and on-site corrections, we obtain
the usual eigenvalue problem � jtcj =E�0�ci. By comparison, it
follows that the corrections are implemented at virtually no
cost, however, as the energy eigenvalue including overlap E
is related to the one without overlap E�0� via the simple trans-
formation E= �E�0�+�2p� / �1+E�0�s / t�. Moreover, the eigen-
vectors are identical. Importantly, this correction breaks the
�−�� symmetry, which would mean that any valence band
is accompanied by a conduction band obtained by a mirror
reflection about the Fermi energy. In the presence of overlap,
this symmetry no longer exists as is evident from the trans-
formation above. As explained below, the accompanying re-
moval of degenerate transitions is a requirement for a non-
vanishing nonlinear response in agreement with results for

the Faraday rotation in graphene23 and CNs.24

In order to compute the nonlinear response efficiently and
accurately, it is essential that appropriate numerical tech-
niques are applied. Two types of singularities are present in
Eq. �1�: delta functions and resonant denominators. The
method applied to handle singular integrands is exemplified
by the last term of Eq. �1� for which we adopt the substitu-
tion,

1

� ji + � jl
��� − � ji� →

� ji + � jl

�� ji + � jl�2 + 	2�w�� − � ji� . �3�

Here, the singularity of the resonant denominator is removed
by the introduction of a broadening �	=0.01 eV. Eventu-
ally, all spectra will be convoluted with a line-shape function
to simulate the experimentally observed broadening �

30 meV, as explained below. Hence, the magnitude of �	
is chosen small enough that the final width is not affected but
large enough that numerical instabilities are removed. The
delta function is regularized by the adoption of the following
discrete approximation:25

�w�x� = �
1

w
�1 − � x

w
�� , � x

w
� � 1

0 � x

w
� � 1.� �4�

The energy eigenvalues and eigenvectors needed to calculate
transition frequencies and matrix elements in Eq. �1� are
computed on a regular grid of k points kn with n
=1, . . . . ,nmax covering the positive half of the Brillouin
zone. Accordingly, the k integral is replaced by a discrete
summation over k points. To evaluate the discrete delta func-
tion at the mth point, we need the transition frequency
� ji�km� as well as the broadening given by w= �� ji�km+1�
−� ji�km−1��.25 More sophisticated approximations for the
delta function exist25 but were not found to improve results
significantly. To achieve sufficient k-point resolution, it was
found that nmax=500 was needed. Finally, the response must
be evaluated at an extremely fine grid of � values in order to
capture resonances with sufficient accuracy. It was found that
as many as 100 000 values in the range 0–5 eV were re-
quired for this purpose. As an example, the nonlinear re-
sponse of a �4,2� nanotube is shown in Fig. 1. The response
is clearly dominated by several highly peaked resonances.
The shape of these resonances basically reflects the density
of states of the one-dimensional �1D� structure 1 /��−�g
above an energy gap ��g. Thus, it is mainly the singular
nature of the 1D density of states that necessitates such a fine
� sampling.

The resonance structure in Fig. 1 is readily explained
from the simplified band diagram in Fig. 2. To highlight the
role of the wave-function overlap, it is instructive to consider
the simplifying case for which �−�� symmetry remains
valid. Hence, in Fig. 2, the two lowest conduction and two
highest valence bands are positioned symmetrically above
and below the Fermi level. Consequently, the c2−c1 and v2
−v1 energy separations are of equal magnitude and denoted
as � in Fig. 2. Also, the fundamental c1−v1 band gap is
denoted as . Specifically, for the �4,2� nanotube the band
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edges calculated in the simple orthogonal model are located
at �1.0 and �1.75 eV and so one finds =2.0 and �
=0.75 eV. The two halves of the figure depict vvc processes
involving two valence and one conduction band and vcc pro-
cesses involving one valence and two conduction bands, re-
spectively.

The 2� resonances, i.e., the first term in Eq. �1�, are re-
sponsible for the low-energy behavior of the response.
Hence, naively a 2� resonance at half the fundamental band
gap ���1 eV could be expected but, in fact, this transition
is forbidden. To see why, it should be noted that the 2�
transitions are between states i and j and, moreover, that the
strength of the transition is proportional to pij

x . The selection
rules for CNs are given in, e.g., Refs. 22 and 26. For parallel
polarization �z axis�, only transitions between symmetrically
positioned bands �v1→c1, v2→c2, etc.� are allowed;
whereas for perpendicular polarization �x and y axes� the
allowed transitions are between bands shifted by �1 �v1
→c2, v2→c1, etc.�. Consequently, pv1,c1

x =0 and the 2� reso-
nance at �= /2 is forbidden. In contrast, pv1,c2

x , pv2,c1

x �0,
and so a 2� resonance at ��= �+�� /2 is expected. Hence,
the lowest 2� resonance coincides with half the band gap

obtained in the linear response for perpendicular polariza-
tion. Notice, however, that both vvc and vcc processes con-
tribute to the nonlinear resonance. As indicated in Fig. 2, the
states involved in the two processes are �ijl�= �v1c2v2� and
�ijl�= �v2c1c2�, respectively. For these two processes, the
transition strength Pijl is identical. However, each process is
weighted by a factor � 1

2� ji−�li�−1, 
cf. Eq. �1��. It is readily
demonstrated that 1

2�� ji−��li equals �+3�� /2 and −�
+3�� /2 for the vvc and vcc processes, respectively. Hence, it
follows that in the presence of �−�� symmetry, the vvc and
vcc processes cancel exactly. When �−�� symmetry is lifted
by the inclusion of overlap, the four states shift in energy.
Hence, for the �4,2� CN the new energy eigenvalues are
−6.36, −5.80, −4.15, and −3.46 eV. As a consequence, the
vvc and vcc resonances are now located at ��=1.17 and
��=1.11 eV, respectively. These transitions are clearly
identified in Fig. 1. In addition, the lowest � resonance co-
incides with the band gap , which has a magnitude of 1.65
eV after inclusion of overlap. This resonance is also clearly
visible in Fig. 1.

III. NONLINEAR SPECTRA

The above theoretical framework has been applied to a
wide range of CNs of varying diameter and chirality. For a
given �n ,m� structure, diameter D and chiral angle � are
determined by

D =
a

�
�n2 + m2 + nm, � = tan−1� �3m

2n + m
� , �5�

respectively, where a=2.46 Å is the graphene lattice con-
stant. As m�n, the chiral angle is restricted to the interval

0° ,30°�. The extremal values correspond to zigzag �0°� and
armchair �30°� CNs, respectively. Both of these structures
are centrosymmetric and yield zero SHG in the dipole limit.
Hence, the nonlinear response is expected to peak at some
intermediate angle. Similarly, as mentioned above, the diam-
eter dependence is expected to peak at a finite value since
large-diameter CNs approach planar �centrosymmetric�
graphene and the resonances of small-diameter CNs are
pushed up in energy. To quantify these trends, we have in-
vestigated the behavior of �a� CNs with varying diameter but
fixed chiral angle and �b� CNs with varying chirality but
approximately fixed diameter. In case �a�, the family of
�2n ,n� CNs are chosen with n between 2 and 17 covering
both semiconductors �n=2,4 ,5 ,7 , . . .� and metals �n
=3,6 ,9 , . . .�. In case �B�, we have studied �8,1�, �7,2�, �7,3�,
and �6,4� CNs with diameters between 6.41 and 6.96 Å. The
unbroadened imaginary part of the response has been com-
puted using the method described in Sec. II. Subsequently,
convolution with the Gaussian exp�−�2 /
2� /
�� taking
�
=30 meV is applied. A small broadening �peak width
25 meV� is typically observed in experimental absorption
or emission spectra for high-quality samples of dispersed
CNs.27 Thus, the present choice applies to such samples, in
which CN bundling is prevented by, e.g., micelle wrapping27

or zeolite cages.10 Finally, a numerical Kramers-Kronig
transformation provides the real part of the broadened re-

FIG. 1. Imaginary part of the nonlinear response of a �4,2�
nanotube.

FIG. 2. Schematic level structure assuming �−�� symmetry.
The transitions responsible for vvc and vcc processes are indicated
in the two panels.
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sponse. The real, imaginary, and absolute values of the re-
sponse for cases 
�a� semiconducting�, 
�a� metallic�, and �b�
are illustrated in Figs. 3–5, respectively. Eight representative
examples of the �2n ,n� family are used to illustrate the gen-
eral trend in case �a�.

Several general trends can be extracted from the nonlinear
spectra in Figs. 3–5. Focusing first on the diameter depen-
dence in Figs. 3 and 4, it is obvious that all spectral features
shift markedly toward lower energy with diameter as ex-
pected. It should be noted that high-energy transitions do
exist for all geometries but obviously their transition
strengths are very low for large-diameter CNs. Hence, the
dominant features shift as the inverse diameter following the
band gap. Also, comparing semiconducting and metallic
CNs, it is clear that the response in the metallic case is sig-
nificantly less than for semiconductors, especially for smaller
diameter CNs. In particular, the low-energy 2� resonances
are suppressed in the metallic structures. To quantify the di-
ameter dependence, we have compared the maximum of the
absolute value ��xyz

�2� ���� in Fig. 6 for all 16 members of the
�2n ,n� family investigated. This plot very clearly illustrates
the observed trend: The response for semiconductors in-
creases roughly linearly with diameter until a maximum
around D=15 Å is reached. Above this value, a rapid de-
crease is found. Hence, the �14,7� and �16,8� structures are
found to be optimal and, in both cases, the resonance is lo-
cated close to ��=0.6 eV. The response of the metallic CNs
peaks at a slightly larger diameter and the maximum is

roughly 30% of the semiconductor value. However, as the
diameter increases, the gap between semiconductors and
metals apparently closes. Hence, for very large CNs, both
classes of materials will have a similar nonlinear response.
Turning finally to the chirality dependence in Fig. 5, we see
that the largest response is obtained for the �7,3� structure
with a chiral angle of 17° close to the midpoint between the
two achiral limits 0° and 30°. For angles either larger or
smaller, a reduced response is found but the reduction is
more pronounced when the angle is reduced. It is noted that
the �2n ,n� family has a chiral angle of 19° close to the op-
timum.

Our results are in reasonable agreement with DFT calcu-
lations for the few cases for which DFT-based spectra are
available, although the DFT spectra differ somewhat among
themselves.1,2 Hence, converting to esu units �using a con-
version factor of 2390 esu V /m�, we find a maximum
��xyz

�2� ���� for the �4,2� CN of 9.6�10−6 esu. The correspond-
ing value of Guo et al.1 is approximately 16�10−6 esu, al-
though a slightly larger broadening �50 meV� was applied in
that study. In contrast, the maximum for the �8,4� structure
found in the present work �16.7�10−6 esu� is larger than the
value reported in Ref. 1 �approximately 10�10−6 esu�.
Thus, simple scaling cannot remove the discrepancies. In
general, however, we find that the main spectral features are
in qualitative agreement in the two approaches. In particular,
for the �4,2� CN, our spectra also display a low-energy shoul-
der on the main resonance �around 1.8 eV�, in clear disagree-

FIG. 3. �Color online� Nonlinear response of four semiconduct-
ing members of the �2n ,n� family.

FIG. 4. �Color online� Nonlinear response of four metallic mem-
bers of the �2n ,n� family.
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ment with experiments.10 Hence, the present work suffers
from the same problems as DFT-based ones and it is tempt-
ing to ascribe the discrepancy to excitons. However, even
though excitonic effects are likely to modify the CN re-
sponse substantially, our results support the conclusion of
Refs. 1 and 2 that the nonlinear response at resonance can
significantly exceed that of III-V and II-VI inorganic semi-
conductors typically considered for applications of SHG.

IV. SUMMARY

In summary, a systematic study of second-harmonic gen-
eration in small-, medium-, and large-diameter CNs has been

presented. Great care has been taken to obtain spectra that
are converged with respect to k point and frequency sam-
pling. In addition, the need for a numerically accurate
method of treating singularities in the nonlinear response has
been pointed out. We have demonstrated that the simplest
nearest-neighbor orthogonal tight-binding description of CNs
leads to a vanishing nonlinear response because of �−��

symmetry. Hence, breaking this symmetry is essential for a
correct description and for this purpose wave-function over-
lap has been included. Within this nonorthogonal model, the
location of fundamental spectral features has been given a
simple explanation.

We have applied the developed framework to study the
diameter and chirality dependences of second-harmonic gen-
eration in both semiconductor and metallic CNs. For the
�2n ,n� family, it is found that the maximum response is ob-
tained around a diameter of 15 Å. Moreover, metallic CNs
generally yield a smaller nonlinear response than semicon-
ductors. For a fixed diameter, intermediate chiral angles
around 15° –20° are found to provide the largest response.
The impact of excitons on these conclusions is possibly sub-
stantial and will be the subject of future work.
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